

DDAATTAATTEECC AAPPII –– DDAAPPII

DDeevveellooppeerr’’ss GGuuiiddee

DDaattaatteecc FFiinnaanncciiaall MMaarrkkeett SSyysstteemm

UUppddaattee 22..003344

Primary audience:

DDeessiiggnneerrss aanndd ddeevveellooppeerrss ooff aann iinntteerrffaaccee ttoo tthhee DDaattaatteecc AAPPII

20-Nov-2020

ICAP del Ecuador

Table of Contents

1. Document history ... 5

2. Objective .. 7

3. General description of the Datatec system 7
3.1 Server components .. 8
3.2 Client components .. 8
3.3 Datatec Application Programming Interface (DAPI) ... 8

4. DAPI platforms ... 9
4.1 Development platforms ... 9
4.2 Installation platforms .. 9
4.3 Minimum DAPI hardware requirements .. 9

5. How to interact with the DAPI .. 9

6. Verification of transmission / reception of messages 10
6.1 Unexpected connection loss .. 10
6.2 Expected connection loss .. 11

7 Methods and events in the DAPI 11
7.1 Methods in the DAPI .. 11

7.1.1 AddLoginCondition method ... 11

7.1.2 FinishMessageProcess method ... 13
7.1.3 Login method .. 13

7.1.4 Logout method .. 14
7.1.5 GetNextFieldName method (ActiveX) ... 14
7.1.6 GetNextField method (Library) .. 15

7.1.7 GetField method (ActiveX) .. 16

7.1.8 GetField method (Library) .. 16
7.1.9 GetFieldBSTR method (Library) .. 16
7.1.10 GetFieldDATE method (Library) ... 17

7.1.11 GetFieldLONG method (Library) ... 17
7.1.12 GetFieldULONG method (Library) .. 17

7.1.13 InitMessage method .. 18
7.1.14 ProcessMyEvents method (Library) ... 18
7.1.15 SendMessage method.. 18
7.1.16 SendMessageTo method ... 19

7.1.17 SetField(ActiveX) and SetFieldBSTR(Library) methods 20
7.1.18 SetFieldDATE method (Library) .. 20
7.1.19 SetFieldLONG method (Library) ... 21
7.1.20 SetFieldULONG method (Library) ... 21

7.1.21 TakeMessage method.. 21
7.1.22 Método IsDefined ... 22
7.1.23 Método GetCompilationType ... 22

7.1.24 Método GetVersion ... 23
7.2 Events available in the DAPI .. 23

7.2.1 Events in the DAPI ActiveX control (OCX) .. 23
7.2.2 Events in the DAPI(Library) library ... 23
7.2.3 OnMessageReceived event ... 23

7.2.4 OnConnection event.. 24

7.2.5 OnDisconnection event ... 24
7.2.6 OnError event.. 25
7.2.7 OnStatusChanged event .. 25

7.2.8 OnDataReceived event.. 26

8 DAPI code examples ... 27
8.1 Example of how to process a message in Visual Basic 27
8.2 Example of how to send a message using C++ .. 28
8.3 Sample workflow process for gathering transaction information for back-office

applications ... 28

9 Configuration of the DAPI in the DMclient 30

10 Configuration of the DAPI in the client (dapi.cfg) 31
10.1 Temporal Configuration File (dapi_tmp_previous_date_log_request.txt) 36

11 Installation of the DAPI in Windows 36
11.1 Installation and use of the Windows ActiveX control (OCX) 36

11.1.1 Check the DAPI version in the OCX File ... 37
11.2 Installation and use of the Windows library ... 38

11.3 VbdxApiTest - Windows example of the use of DAPI 38
11.3.1 Note for 64-bit Windows machines running Visual Basic example 38

11.3.2 Running Visual Basic example ... 39
11.3.3 Login and Logout buttons ... 40
11.3.4 View Fields and View Fields in Depth buttons .. 40

11.3.5 Set As Processed button .. 42

12 DAPI Linux installation .. 42
12.1 Default configuration under Linux ... 42
12.2 OpenSSL ... 42

12.3 Installation and use of the Linux version of DAPI ... 43
12.4 Building the library in Linux .. 43
12.5 Building the Linux sample (drvapitest) .. 43

12.6 Possible error messages during the compilation process 44
12.7 drvapitest - Linux example using the DAPI ... 45

13 Message descriptions ... 46

14 Error Code List ... 47

Table of Figures

Figure 1: General overview of the architecture .. 7
Figure 2 DAPI interface with in-house system. .. 8
Figure 3 Interaction scheme between the wrapper application and the DAPI 11
Figure 4 Flowchart depicting the recommended processing of an Orden_Transaccion

message for back-office logging. .. 29
Figure 5 Select the branch and right-click to view the menu ... 30
Figure 6 Addition of a new PU assigned to the branch of the DAPI user 30
Figure 7 Properties of the new DAPI user. ... 30
Figure 8 User passwords option in the DataManager Client .. 31

Figure 9 DAPI.CFG File. .. 31
Figure 10 Dapi_tmp_previous_date_log... 36

Figure 11 Dxapi.ocx properties... 37

Figure 12 Microsoft Visual C++ redistributable package installed on the client machine38
Figure 13 VbdxApi Test Application Main Window prior to login 39
Figure 14 VbdxApi Test Credentials window (can be ignored). 39

Figure 15 VbdxApi Test Application Main Window ... 39
Figure 16 View Fields Button Window .. 41
Figure 17 View Fields in Depth Button Window ... 42

Figure 18 Dapi Linux structure ... 43
Figure 19 Sample error message when gcc libraries are not found 44

Figure 20 Using yum to install compatibility libraries ... 44
Figure 21 Sample error message when wrong libdapi.a version is used 45
Figure 22 Successful compilation of the sample program .. 45

Figure 23 Execution of the sample program ... 46

11.. DDooccuummeenntt hhiissttoorryy

Date Description

18-Sep-2007 Initial documentation

20-Apr-2009 Review for version 1.056

08-Jan-2010 - Review for changes in version 1.061
- New guibos_feed config parameter for Guibos Messages.
- New Send_Msg_Delay_Millisec config parameter.
- Update of configuration default values (high/low msg log asking).
- Update of other config parameters explanation.
- Windows VBasic sample changes for Guibos messages and to send

back to Datatec System certain messages.
- Linux compilation library/sample notes updated.
- New mk script.

28-Jun-2010 - General review of the document and update of English/Spanish versions
of it, to use the same format.

- Notes added for recompilation (gcc versions and support for 32-64bit
operating systems)

- Note support Windows Vista (32bits) y 7 (32bits)
- DAPI 1.065. General adjustments to use DAPI instead of DGAPI in

environments that receive Guibos messages.
- DAPI 1.066. It sends its version at connection time, so DAPI version is

displayed in versions window of DMClient.
- DAPI 1.067. Use of OpenSSL 0.98j instead of 0.9.7a.

20-Sep-2010 - Section 8.3 added for sample workflow process for gathering transaction
information for back-office

- Section 9 added fo configuration of DAPI in the DMClient
- DAPI 1.069. Support new message

Mantenimiento_Transaccion_Renta_Fija. File “20100920 DAPI Interface
Message Descriptions.xls”

28-Oct-2010 - General review.

30-Jun-2011 - Instructions to run example in Windows 64 bits platforms (section
11.3.1). Rebuild of windows sample (v. 1.077).

- DAPI version checking in OCX file (section 11.1.1).

22-Dec-2017 - Document update in the following sections:
- Host requirements for Development and run-time platforms.
- Windows DAPI installation.
- Linux DAPI installation.
- Linux OpenSSL configuration.
- DAPI library installation in Linux.
- Compilation of the DAPI library in Linux.
- Compilation of the DAPI example in Linux.
- Sample execution of the DAPI in Linux.

14-Nov-2019 - English version update.

21-Nov-2019 - Implementation of using a new temporary configuration file, used to start
with a complete retransmissions of messages of one day in the
past.Directives log_days_high_messages and log_days_low_messages
in the dapi.cfg file are removed.

25-06-2020 - Implementation new functions:
- GetCompilationType
- GetVersion
- Function documentation IsDefined.
- Generation of VisualBasic sample with VisualStudio 2013 for platforms

x86 and x64.

22-09-2020 - General review. OpenSSL 1.1.1b.

24-09-2020 - In the login message 201, a lowercase “d” is assigned in the
bandera_tipo_primaryuser field, to indicate that it is a Dapi client.

29-09-2020 - For the Spot or Next Day Colombia markets, the codigo_externo field is
not set to zero.

12-10-2020 - 2.033 Changes. New static (.a) and dynamic (.so) libraries.
- Linux 5 (6.8) and Linux 7 examples available.

20-11-2020 - General review.

https://ssl.microsofttranslator.com/bv.aspx?ref=TAns&from=&to=en&a=dapi.cfg

22.. OObbjjeeccttiivvee

The objective of this document is to give a general overview of the Datatec API (DAPI), its
installation, configuration and files distributed. It is also included a Reference Guide for API
programmers and the description for samples provided in the supported platforms
(Linux/Windows). Additionally, it shows the installation and configuration steps of DAPI
applications for Windows and Linux platforms.

33.. GGeenneerraall ddeessccrriippttiioonn ooff tthhee DDaattaatteecc ssyysstteemm

The DAPI (Datatec API), as the name suggests, is an Application Programming Interface that
allows the Datatec application platform to send and receive data to and from external systems.
The application that the DAPI allows external systems to interface with is the Electronic Financial
Markets system (known as SMF for its initials in Spanish) developed by Datatec. The SMF is a
distributed platform for trading of financial instruments.

The normal trading operations are performed via messaging in a client-server environment. SMF
uses the TCP/IP protocol for sending messages, and therefore the delivery of each message to
its destination is assured. The following diagram illustrates how the system is spread over several
physical locations and how each of the components interacts with each other.

Figure 1: General overview of the architecture

As you will note in the above figure, there are several components in the SMF application. They
are broadly classified as Client and Server components.

To develop and test the interface with the DAPI, it is essential to understand on a general level
where the DAPI fits into the SMF application and with whom it interacts. The following is a
general explanation of the architecture of SMF.

3.1 Server components

DataServer. It is one of the server components. It acts as the message exchange and forwarding
unit that integrates connections from various client components. Multiple DataServers can be
used to distribute the load of client connections as shown in Figure 1. Loosely, DataServers can
be compared to routers, because they maintain connections and forward messages.

DataManager Server. It is the other server component. This application is responsible for user
logon validation, user profile maintenance, master file maintenance, calculation of market
statistics, and other related functions.

Matching Engine. It is a other server component that is in charge of maintaining trade credits
limits and process orders, trades and trade statistics.

These components are usually setup in a central location.

3.2 Client components

All end users of the SMF system connect to a DataServer via a client application.

This client application has a graphical user interface that allows users to view and participate in
the market in real time. Market operators place orders (offers or bids) into the markets that are
then viewed by the entire market. Other users can then trade these bids and offers.

The client application communicates with the system via a number of different messages. These
messages can be sent from the client to the system, or can be received by the client from the
system.

3.3 Datatec Application Programming Interface (DAPI)

The DAPI is a particular kind of client whose function slightly varies from a normal client. The
DAPI does not have a GUI, but nonetheless can send and receive the messages that a normal
client would use. It is important to remember that the DataServer considers the DAPI as just
another client.

Anyone that intends to use the functionality of the DAPI to interact with the SMF system should
create an application that acts as a wrapper of the DAPI and makes appropriate function calls to
use the DAPI. The details of these functions are explained further down in this document. On the
other side, this wrapper application should also interact with the appropriate in-house system as
shown in the following diagram:

Figure 2 DAPI interface with in-house system.

Whenever a change occurs in the market (e.g.: an order input, a withdrawal of an order,
modification of an order, etc), the SMF system sends a message to the DAPI, which can be read
by the wrapper application and provided to the in-house application.

As in any connection-oriented system, SMF relies on the existence of connection between the
DataServer and the client components including the DAPI. The DAPI uses its own form of
Transmission Recovery Protocol in the event that the connection is lost. Once a message is
received by the DAPI, it is placed in a message queue to be processed by the wrapper
application. The DAPI announces the arrival of a message via the triggering of an Event. The
wrapper application must be programmed to interpret these events, collect messages of interest
using Methods provided by the DAPI, and then transmit the appropriate information on to the in-
house system. There are also methods available in the DAPI which the in-house system can use
to send messages out to the SMF system.

44.. DDAAPPII ppllaattffoorrmmss

4.1 Development platforms

The DAPI is available for the following platforms:

1. Windows ActiveX Control (OCX).
2. Windows Library (LIB). In this case, the developer of the interface application has to

generate a multithreaded application.
3. Linux 5 (6.8) and Linux 7 static and dynamic libraries. Libdapi.a and Libdapi.so.

4.2 Installation platforms

The DAPI, in its OCX form and/or windows library, can be run on the following operating systems:

 Windows 10/Server (32/64 bits)

As a static and/or dynamic library, it can be used in the following operating systems:

 Linux 5, 6.8 and 7

4.3 Minimum DAPI hardware requirements

 Processor : Dual core or higher.

 Memory : 4GB or more.

 Hard Disk : At least 100 GB available space.

55.. HHooww ttoo iinntteerraacctt wwiitthh tthhee DDAAPPII

The following is the logical sequence of DAPI methods to be called by the in-house application:

LOGIN: The first method that needs to be called is the Login(). The login method requires the
username and password to be sent as parameters. This method initiates various sub-processes
that maintain an asynchronous connection with the DataServer. Any error during the connection
process will be reported by the OnError() event handler. Please refer to the error list further
below in this document. The OnConnection() event will report the result of each login attempt. On
successful connection, the login() will return DAPI_INITIALIZED and the OnConnection() will
return 0.

MESSAGE RECEPTION: On reception of each message by the DAPI from the SMF system, the
OnMessageReceived() event will be triggered.

ACCESSING THE MESSAGE RECEIVED: To access the message received, the
TakeMessage() method must be used. Individual fields of the message can be accessed using
the GetField() method.

MARKING THE MESSAGE AS PROCESSED: Once the message has been read successfully,
to ensure that the DataServer does not retransmit the same message on reconnection after a
connection loss, the FinishMessageProcess() should be called. It is important to note that in case
of an unexpected loss of connection, the SMF does NOT retransmit a message that it already
transmitted and whose reception has been confirmed by the DAPI.

SENDING MESSAGES TO THE DATASERVER: To prepare a message to be sent to the
DataServer by the DAPI, the message has to be initialized by calling InitMessage(). On
successful initialization, the fields can be set by using SetField(). If it were necessary, specify the
message targets with method SendMessageTo(). Once the message has been populated,
SendMessage() will send the message to the DataServer. If the InitMessage() method is called
without any parameters, it will initialize the last message handled by TakeMessage().

LOGOUT: Logout() will produce a normal disconnection of the DAPI from the DataServer. In the
event that Logout() has been called before the FinishMessageProcess() is completed for a
message received from the DataServer, on subsequent reconnection of the DAPI to the
DataServer, this pending message will be retransmitted.

The DAPI records certain information in its own data files. An example is the DAPI.log. The
information recorded in these files is useful for the DAPI to determine what to send or receive
from the DataServer when a connection is made. Therefore, under normal conditions, these
files should not be deleted or modified.

66.. VVeerriiffiiccaattiioonn ooff ttrraannssmmiissssiioonn // rreecceeppttiioonn ooff mmeessssaaggeess

Before sending each message to the DataServer the DAPI stores the message in a file. On
reconnection, the DAPI uses this file to decide what to retransmit. There are certain other files
within the DAPI directory structure, one for each DataServer, which store the messages that have
been received and processed by the wrapper application. It is essential that the wrapper
application has sufficient privileges to create and modify these files.

6.1 Unexpected connection loss

This is when the DAPI loses connection with the DataServer due to external causes. In such
cases, the DAPI starts attempting to reopen the connection with the DataServer, and on
successful connection it receives the messages that are not marked as having been processed. If

a message that had been marked as already processed were to be received by the DAPI, the
OnMessageReceived() event would not be triggered.

6.2 Expected connection loss

This is when the wrapper application calls the Logout() DAPI method. The DAPI memory is
released. Shutting down and restarting the wrapper application or the DAPI would be considered
as an expected loss of connection.

77 MMeetthhooddss aanndd eevveennttss iinn tthhee DDAAPPII

7.1 Methods in the DAPI

Methods are functions that the OCX and the C++ library make available to the wrapper
application so that it can communicate with the SMF system.

Figure 3 Interaction scheme between the wrapper application and the DAPI

Below are described the methods of CdxapiCtrl ActiveX control and the ones for CdcApi library.
Each method is presented in the ActiveX (OCX) control format and then in C++ format for C++
library.

For more details see section Error Code List and Message descriptions.

7.1.1 AddLoginCondition method

VARIANT CdxapiCtrl :: AddLoginCondition (BSTR message_type, BSTR field_name,
BSTR cond_operation, BSTR eq_value)

int CdcApi :: AddLoginConditon (LPCTSTR message_type, LPCTSTR field_name,
LPCTSTR cond_operation, LPCTSTR eq_value)

Returns
Returns 0 if there are no errors. If there are errors, one of the following errors will be returned:

DAPI_ERR_NOT_INITIALIZED_YET
DAPI_ERR_ILLEGAL_RECORD_TYPE_SPECIFIED
DAPI_ERR_ILLEGAL_FIELD_NAME_SPECIFIED
An error in the condition evaluation can also generate the following error:
DAPI_ERR_CONDITION_EVALUATION.

Parameters
message_type The message type to be handled.
field_name The field of the message to be checked.

Optionally a logical operation can be defined between two previously defined conditions using the
following operators:

Operator Meaning

“|” OR. A logical OR operation between the two previously defined results of
calling this method. The result of this logical operation can be used in a
subsequent logical operation using the BNF execution format.

“&” AND. A logical AND operation between the two previously defined results
of calling this method. The result of this logical operation can be used in a
subsequent logical operation using the BNF execution format.

cond_operation The logical operation to be performed between the field_name and eq_value
parameters. The conditional operators can be:

Operator Meaning

“==” True when both operands have equal contents

“=” True when both operands have equal contents

“LIKE” The SQL comparison operator LIKE. This operator

permits searching for patterns of text within a

field. The comparison pattern (the second

operand) can contain the following characters:

%: Stands for 0 o more characters(any character)

*: Stands for any character

-: Stands for any character

[..]: Stands for any of the characters placed

inside the brackets.

[^...]: Stands for any character except those

placed inside the brackets.

“NOT LIKE” Logical inverse of the SQL comparison operator

LIKE.

eq_value The value against which the contents of the parameter field_name will have to be
compared against.

Description
This method allows the selection of the messages to be received by the application. The
messages which do not comply with the condition are discarded by the DAPI and are not
delivered to the application.

Before using Login(), call this method as many times as required and using different conditions if
necessary. The parameter field_name may contain ‘&’ or ‘|’ to indicate logical operations between
two conditions previously defined. BNF format must be used to control the final result between
the selection conditions as shown in the following examples:

The above examples accept record types of L_msType with the field named instrument having
values ‘SWAP’ or ‘NDF’ and with the field buyer_dealer starting with ‘AAAL’ or with the field
seller_dealer starting with “BBBL”

If no condition is specified for a particular message type, all the messages of that type will be
accepted and delivered to the application.

7.1.2 FinishMessageProcess method

VARIANT CdxapiCtrl :: FinishMessageProcess (BSTR message_type, BSTR
message_id)

int CdcApi :: FinishMessageProcess (LPCTSTR message_type, ULONG
message_id)

Returns
Returns 0 if there are no errors. If there are errors, the number corresponding to the error will be
returned.

Parameters
message_type: Indicates the message type. Use the value received by the event
OnMessageReceived.

message_num: Indicates the message number. Use the value received by the event
OnMessageReceived. This is a unique identifier of the record and is directly associated with the
message generated by the DataServer.

message_id: This is the message identifier. Use the value received by the event
OnMessageReceived. This is a unique identifier of the record and is directly associated with the
message generated by the DataServer.

Description
This method frees a particular message from the message queue managed by the DAPI and
marks the message as processed. All those messages which have not been marked as
processed using this method will be retransmitted on reconnection of the DAPI.

7.1.3 Login method

VARIANT CdxapiCtrl :: Login (BSTR username, BSTR password)
int CdcApi:: Login (LPCTSTR username, LPCTSTR password)

L_msType = “Guibos”;

m_dapi.AddLoginCondition (L_msType, "instrument", "==", "SWAP");

m_dapi.AddLoginCondition (L_msType, "instrument", "==", "NDF");

m_dapi.AddLoginCondition (L_msType, "|", "", "");

m_dapi.AddLoginCondition (L_msType, "buyer_dealer", "LIKE", "AAAL%");

m_dapi.AddLoginCondition (L_msType, "seller_dealer", "LIKE", "BBBL%");

m_dapi.AddLoginCondition (L_msType, "|", "", "");

m_dapi.AddLoginCondition (L_msType, "&", "", "");

Returns
Returns 0 if there are no errors. If there are errors, the number corresponding to the error will be
returned.

Parameters
Username The username that the DAPI will use to connect to the DataServer. This would be
provided by the administrator of the system.

Password The password that the DAPI will use to connect to the DataServer. This would be
provided by the administrator of the system.

Description
Login() initiates an asynchronous connection attempt on behalf of the DAPI with the DataServer.
It also starts a few other processes which monitor the connection and control the message flow
with the DataServer. Subsequent calls of this method within the same session of the DAPI
application only updates the username and password which the DAPI uses to connect to the
DataServer.

Apart from providing the username and password, the system administrator will also have to
provide sufficient privileges to the DAPI user to receive the desired market information.

The IP address of the DataServer and other relevant information required to establish the
connection with the system, should be updated in dapi.cfg. This file should reside in the same
directory from where the DAPI interface application is being executed. The OnConnection event
indicates the result of the Login process. If the Login attempt fails, or the connection to the
DataServer is lost, the DAPI will initiate connection attempts every 3 seconds until reconnection is
achieved, or Logout() is called.

After four consecutive unsuccessful attempts to connect to a particular DataServer, the DAPI will
try to connect to the next DataServer in the list as indicated in the dapi.cfg file. On reaching the
end of the list, it will start again with the first DataServer configured.

7.1.4 Logout method

VARIANT CdxapiCtrl :: Logout (void)
int CdcApi :: Logout (void)

Returns
Returns 0 if there are no errors. If there are errors, the number corresponding to the error will be
returned.

Parameters
This method does not accept any parameters.

Description
This method is used to cause a normal termination of the connection of the DAPI with the
DataServer. This function can also be used to end reconnection attempts to the DataServer by
Login(), in which case all the threads launched by Login() are also terminated. It is important to
note that messages which have not yet been marked as processed by using
FinishMessageProcess() at the moment of calling Logout(), will be retransmitted upon
reconnection of the DAPI to the DataServer.

7.1.5 GetNextFieldName method (ActiveX)

VARIANT CdxapiCtrl :: GetNextFieldName (BSTR field_name)

Return value
Returns the name of the next field in the message. If there is no next field in the message, or if an
error occurs, nothing is returned.

Parameters
field_name The name of the field whose subsequent field’s name is to be fetched. Please refer to
the exact field name as provided in the Message List. If nothing (‘’) is configured for this
parameter, the name of the first field in the message is returned.

Description
This method is used to get the name of the next field in a message. It can be used within a loop
to browse all fields of a message. In this case, the first field name must be asked with and empty
string (“”).

This method allows parsing through the field names of the last message processed by
TakeMessage(). Please note that for now only the Spanish version of the field name may be
used.

7.1.6 GetNextField method (Library)

int CdcApi :: GetNextField (char * field_name, char *data_copy)

Returns
Returns the data type of the next field in the message. See table below. In the event of an error,
returns 0.

Code Field Type

1 FLD_SHORT

2 FLD_UNSIGNED_SHORT

3 FLD_IMSIGNED_LONG

4 FLD_NUM_ASCII_INT

5 FLD_NUM_ASCII_DOUBLE

6 FLD_ALPHA

7 FLD_INT

Parameters
field_name The name of the field whose subsequent field data type and content is to be obtained.
If nothing (‘’) is configured for this parameter, it returns the name of the first field in the message.
The name of the field queried (i.e. the next field) will be copied to field_name.
data_copy The contents of the field queried (next field) will be copied to this parameter.

Description
This method permits browsing through the fields of the last message processed by
TakeMessage() and obtaining their contents. It returns the field name, field type and the value
stored in the field. This method can be used within a loop to browse through the message. It is
important to ensure that the parameters field_name and data_copy have sufficient space
allocated to store the field name and its contents. Only the Spanish version of the field names
may be used at the moment.

7.1.7 GetField method (ActiveX)

BSTR CdxapiCtrl:: GetField (BSTR field_name)

Returns
Returns the contents of the field in the form of a string. Returns an empty string in the event of an
error.

Parameters
field_name The name of the field whose content is required.

Description
Returns the value contained in the field mentioned in the parameter field_name as a string. In the
event of an error, the OnError event handler is triggered and it returns an empty string. This
method allows parsing through the fields of the last message processed by TakeMessage().
Please note that for now only the Spanish version of the field names may be used.

7.1.8 GetField method (Library)

int CdcApi::GetField (LPCTSTR field_name, char *data_copy)

Returns
Returns the data type of the field queried. See table below. In the event of an error, returns 0.

Code Field Type

1 FLD_SHORT

2 FLD_UNSIGNED_SHORT

3 FLD_IMSIGNED_LONG

4 FLD_NUM_ASCII_INT

5 FLD_NUM_ASCII_DOUBLE

6 FLD_ALPHA

7 FLD_INT

Parameters
field_name The name of the field whose content is to be obtained.
data_copy The contents of the field queried will be copied to this parameter.

Description
This method permits the contents of a field in a message to be obtained. The method allows
parsing through the fields of the last message processed by TakeMessage(). For now only the
Spanish version of the field names may be used.

7.1.9 GetFieldBSTR method (Library)

int CdcApi:: GetFieldBSTR (LPCTSTR field_name,char *data_copy)

Returns
Returns the length of the field queried. In the event of an error, it returns 0.

Parameters
field_name The name of the field whose length and content is to be obtained

data_copy The contents of the field queried will be copied to this parameter as a null terminated
string.

Description
This method obtains the contents of a message field in string format. The method allows parsing
through the fields of the last message processed by TakeMessage(). For now, only the Spanish
version of the field names may be used.

7.1.10 GetFieldDATE method (Library)

int CdcApi::GetFieldDATE (LPCTSTR field_name,char *data_copy)

Returns
Returns the length of the field returned, which is 8 characters. In the event of an error, returns 0.

Parameters
field_name Name of the field whose value is to be obtained.
data_copy The contents of the field queried will be copied to this parameter, in the format
YYYYMMDD.

Description
This method obtains the contents of a field whose data type is date. The field is copied as a
sequence of 8 bytes which contains the date. The method allows parsing through the fields of the
last message processed by TakeMessage(). For now, only the Spanish version of the field names
may be used.

7.1.11 GetFieldLONG method (Library)

LONG CdcApi :: GetFieldLONG(LPCTSTR field_name)

Returns
Returns the value of the field converted to a signed long data type. If an error is encountered, the
OnError event handler is triggered and returns a value of 0.

Parameters
field_name Indicates the name of the field whose value is to be obtained.

Description
This method obtains the content of a field as a signed long number. The method allows parsing
through the fields of the last message processed by the TakeMessage(). Please note that for now
only the Spanish version of the field names may be used.

7.1.12 GetFieldULONG method (Library)

ULONG CdcApi :: GetFieldULONG (LPCTSTR field_name)

Returns
Returns the value of the field converted to an unsigned long data type. If an error is encountered,
the OnError event handler is triggered and returns a value of 0.

Parameters
field_name Indicates the name of the field whose value is to be obtained.

Description
This method obtains the content of the field as an unsigned long number. The method allows
parsing through the fields of the last message processed by TakeMessage(). Please note that for
now only the Spanish version of the field names may be used.

7.1.13 InitMessage method

VARIANT CdxapiCtrl :: InitMessage (BSTR message_type)

int CdcApi::InitMessage (LPCTSTR message_type)

Returns
Returns 0 if there are no errors. If an error occurs, it returns the appropriate error code.

Parameter
message_type Indicates the type of the message to be constructed. If the parameter is empty
(‘’), the type and contents of the last message handled by TakeMessage() will be used as the
base for the new message.

Description
Using this method, the construction of a new message to be sent to the system can be initiated.
The DAPI wrapper application must first call this method and then populate the fields of the
message with appropriate values. If the message_type parameter is blank, then only those fields
which are different in the new message as compared to the previous one handled by
TakeMessage() need to be populated. Use SetField() to populate the message fields. If it were
necessary, specify the message targets with method SendMessageTo(). Finally call
SendMessage() to send the message to the system.

7.1.14 ProcessMyEvents method (Library)

Void CdcApi :: ProcessMyEvents(void)

Description
Call this method to use the multithread protection of the DAPI. On calling this method, the DAPI
will call certain subroutines which will attend to all the events that have occurred up to that
moment. Once processed, it suspends attention to all events until the next call of
ProcessMyEvents(). Note that error events are thread-safe whereas normal events are not.

Do not call this method if the application solves multithreading independently.

7.1.15 SendMessage method

VARIANT CdxapiCtrl :: SendMessage (BSTR message_type)

int CdcApi :: SendMessage (LPCTSTR message_type)

Returns
Returns 0 if there are no errors. If an error occurs, it returns the appropriate error code

Parameters
message_type Indicates the type of the message that needs to be sent. If the parameter is
empty, the last message handled by TakeMessage() will be used.

Description
 This method is used to send a previously constructed message to the system. Use
InitMessage() to initialize the message, then populate the fields of the message using SetField().If
it were necessary, specify the message targets with method SendMessageTo(). Finally execute
SendMessage() to deliver the message to the system.

7.1.16 SendMessageTo method

VARIANT CdxapiCtrl :: SendMessageTo (BSTR address_type, BSTR address_data)

int CdcApi :: SendMessageTo (LPCTSTR address_type, LPCTSTR address_data)

Returns
Returns 0 if there are no errors. If an error occurs, it returns one of the following error codes:

DAPI_ERR_NOT_INITIALIZED_YET
DAPI_ERR_ILLEGAL_ADDRESS_TYPE_SPECIFIED.

Parameters
address_type

Indicates the type of address where the message has to be sent to. This can be:

Value Meaning

“PU” Primary user

“SU” Branch

“IN” Institution

“XP” Except this primary user

“XS” Except this branch

“GR” Name of an internal group

address_data

Indicates the addresses where the message has to be sent. It is recommended that the
validity of this address is confirmed with the system administrator. This can be:

address_type Value

“PU” Name of a user PU (4 characters)

“SU” Name of a branch(8 characters)

“IN” Name of an institution (4 characters)

“XP” Name of a user PU that is not a receiver (4 characters)

“XS” Name of a branch that is not a receiver (8 characters)

“GR” Name of an internal group or receivers (8 letters)

Description
This method sets the address to which the message needs to be sent. This method should be
called before using SendMessage(). If the message needs to be sent to various destinations, this
method should be called multiple times. The destination address (address_data) can vary in size
depending on the type of address. Normally it is the code assigned to the users, branches or
institutions by the administrator.

By default, that is to say if this method is not called, the message will be sent to the
Datamanager.

Example:

m_dapi.TakeMessage (L_MessType, mess_num); // Assigns the last message received

m_dapi.InitMessage (“”); // Initializes the messaage to be sent equal to

mess_num

m_dapi.SetFieldBSTR(L_MessType, "bandera", "S"); // Changes some field

// Assigns as receivers all the users of the branch

m_dapi.SendMessageTo (“SU”, m_dapi.GetField("sucursal")

// except this user

m_dapi.SendMessageTo (“XP”, m_dapi.GetField("codigo_primaryuser")

// Sends the message

m_dapi.SendMessage(L_MessType);

7.1.17 SetField(ActiveX) and SetFieldBSTR(Library) methods

VARIANT CdxapiCtrl :: SetField (BSTR message_type, BSTR field_name, BSTR
new_value)

int CdcApi::SetFieldBSTR (LPCTSTR message_type, LPCTSTR field_name, LPCTSTR

new_value)

Returns
Returns 0 if there are no errors. If an error occurs, it returns the appropriate error code.

Parameters
message_type Indicates the type of message whose field needs to be set.

field_name Indicates the name of the field whose value has to be set.

new_value Indicates the value to be set to the field.

Description
This method assigns the contents of new_value (that must be BSTR or LPCTSTR type data) to
the field specified in field_name which belongs to the message in message_type. Remember
that before assigning the field values, the message has to be initialized using InitMessage(). If
message_type is null, the last message handled by TakeMessage() will be used. If an error
occurs, the OnError event handler will be triggered.

7.1.18 SetFieldDATE method (Library)

int CdcApi :: SetFieldDATE (LPCTSTR message_type, LPCTSTR field_name, DATE
new_value)

Returns
Returns 0 if there are no errors. If an error occurs, it returns the appropriate error code.

Parameters
message_type Indicates the type of the message whose field needs to be set.

field_name Indicates the name of the field whose value has to be set.

new_value Indicates the value (a date) to be set to the field.

Description
This method assigns the contents of new_value (which must be a date string with format
YYYYMMDD) to the field specified in field_name which belongs to the message in
message_type. Remember that before assigning the field values, the message has to be
initialized using InitMessage(). If message_type is null, the last message handled by
TakeMessage() will be used. If an error occurs, the OnError event handler will be triggered.

7.1.19 SetFieldLONG method (Library)

int CdcApi :: SetFieldLONG (LPCTSTR message_type, LPCTSTR field_name, LONG
new_value)

Returns
Returns 0 if there are no errors. If an error occurs, it returns the appropriate error code.

Parameters
message_type Indicates the type of the message whose field needs to be set.

field_name Indicates the name of the field whose value has to be set.

new_value Indicates the value to be set to the field.

Description
This method assigns the contents of new_value (which must be a long number) to the field
specified in field_name which belongs to the message in message_type. Remember that before
assigning the field values, the message has to be initialized using InitMessage(). If message_type
is null, the last message handled by TakeMessage() will be used. If an error occurs, the OnError
event handler will be triggered.

7.1.20 SetFieldULONG method (Library)

int CdcApi :: SetFieldULONG (LPCTSTR message_type, LPCTSTR field_name, ULONG
new_value)

Returns
Returns 0 if there are no errors. If an error occurs, it returns the appropriate error code.

Parameters
message_type Indicates the type of the message whose field needs to be set.

field_name Indicates the name of the field whose value has to be set.

new_value Indicates the value to be set to the field.

Description
This method assigns the contents of new_value (which must be an unsigned long number) to the
field specified in field_name which belongs to the message in message_type. Remember that
before assigning the field values, the message has to be initialized using InitMessage(). If
message_type is null, the last message handled by TakeMessage() will be used. If an error
occurs, the OnError event handler will be triggered.

7.1.21 TakeMessage method

VARIANT CdxapiCtrl :: TakeMessage (BSTR message_type, BSTR message_id)

int CdcApi :: TakeMessage (LPCTSTR message_type, ULONG message_num)

Returns
Returns 0 if there are no errors. If an error occurs, it returns the appropriate error code.

Parameters
message_type Indicates the type of the message. Use the same value as received in the event
OnMessageReceived.

message_num Indicates the message number. Use the same value as received in the event
OnMessageReceived. This is a unique identifier of the message and is directly associated with
the message generated by the DataServer.

message_id Indicates the identifier of the message. Use the same value as received in the event
OnMessageReceived. This is a unique identifier of the record and is directly associated with the
message generated by the DataServer.

Description
This method prepares a message to be read using the GetField method. The DAPI can receive
messages from various DataServers within the system. These messages are assigned a unique
identifier and on reception of the message, the OnMessageReceived event is triggered. This
unique identifier must be used in TakeMessage() to prepare the message to be read.

7.1.22 Método IsDefined

VARIANT CdxapiCtrl:: IsDefined (LPCTSTR field_name)
Int CdcApi::IsDefined (LPCTSTR field_name)

Valor de retorno
Returns 1 if field exist in the message. Otherwise returns 0.

Parámetros
 field_name: Indicates the field name of which it is required to confirm its existence into
the message.

Descripción
This method searches the field field_name in the message.

7.1.23 Método GetCompilationType

VARIANT CdxapiCtrl:: GetCompilationType ()
int CdcApi::GetCompilationType (LPCTSTR compilation_type)

Valor de retorno
Returns always 1.

Parámetros
 compilation_type: The Dapi compilation platforms is stored.

Descripción
This method assigns a string to compilation_type; in case the Dapi build platform is 32-bit, it
assigns “x86”; otherwise assigns “x64”.

7.1.24 Método GetVersion

VARIANT CdxapiCtrl:: GetVersion ()
int CdcApi:: GetVersion (LPCTSTR version)

Valor de retorno
Returns always 1.

Parámetros
 version: The Dapi versión is stored.

Descripción
This method assigns a string to version; with the version number of the generated Dapi.

7.2 Events available in the DAPI

Event handlers are predefined methods which the DAPI calls when a particular event occurs. The
application should contain the necessary source code to perform the actions required for each
event in the corresponding event handler. The event handler informs the application that an
event has occurred.

7.2.1 Events in the DAPI ActiveX control (OCX)

In the OCX version of the DAPI, an event is triggered based on the Windows messaging scheme.
Therefore, all the events are processed in a sequence and without internal interference between
events and the execution of the event handlers.

Visual Basic applications must use the Invoke method to execute an event handler provided by
the DAPI and therefore pass information to the window (see the example in Visual Basic supplied
with the distribution kit). This is necessary because the thread which attends to a particular
window of the application is independent of the other event-related asynchronous processes.

7.2.2 Events in the DAPI(Library) library

In this case, the wrapper application should periodically call the ProcessMyEvents method (see
drvapitest.cpp). This interaction will cause certain delay in processing the messages, but this
delay is directly related to the time interval between each call of ProcessMyEvents. Excessive
calls of this method will result in unnecessary use of CPU time.

7.2.3 OnMessageReceived event

CdxapiCtrl :: OnMessageReceived (BSTR message_type, BSTR message_id)

CdcApi :: OnMessageReceived (LPCTSTR message_type, ULONG message_num)

Parameters
message_type This parameter indicates the type of the message received. This value must be
used in TakeMessage to prepare a message to be read.

message_num The number assigned by the DAPI to this message. This value must be used in
TakeMessage to prepare a message to be read.

message_id The number assigned by the DAPI to this message. This value must be used in
TakeMessage to prepare a message to be read.

Description
This event is triggered when the DAPI receives a message from the DataServer. The
application can access the message by calling TakeMessage() followed by GetField(). The
number or id must also be used with the FinishMessageProcess(). The DAPI maintains a list of
messages received until the FinishMessageProcess() is called or until disconnection. On
reconnection it will receive all those messages which have not been marked as processed.

7.2.4 OnConnection event

CdxapiCtrl :: OnConnection (int result_code)

CdcApi :: OnConnection (int result_code)

Parameters
result_code This code indicates the result of the connection. Zero would mean that the
connection has been established satisfactorily. If unable to establish the connection, the ASCII
code of the letter received from the DataServer is returned.

Description
Connection is attempted by calling Login(), and at the end of each attempt the DAPI executes this
event to report the result of the connection attempt.

7.2.5 OnDisconnection event

CdxapiCtrl :: OnDisconnection (int reason_code, BSTR reason_text)

CdcApi :: OnDisconnection (int reason_code, LPCTSTR reason_text)

Parameters
reason_code

Shows the actual state of the connection.

Code Field Type

1 DCON_ST_OPENING

2 DCON_ST_OPENCHK

4 DCON_ST_NORMCON

5 DCON_ST_CLOSE

6 DCON_ST_TERMIN

reason_text The possible cause of the disconnection.

Description
The connection is maintained by the DAPI for an indefinite period of time. Once the connection
has been established, if there is a disconnection the DAPI will generate this event. Note that in
the event of an unexpected connection loss, the messages which were received but not marked
as processed will be re-received by the DAPI on reconnection.

7.2.6 OnError event

CdxapiCtrl :: OnError (int error_code, BSTR error_text, int next_action_code, BSTR
next_action_data)

CdcApi :: OnError (int error_code, LPCTSTR error_text, int next_action_code, int
next_action_data)

Parameters
error_code

error_text
An explanatory text about the error.

next_action_code:

Suggested next action. The possible values are:

Value Definition Meaning

0 DAPI_NEXT_ACTION_CONTINUE The DAPI can continue
running.

1 DAPI_NEXT_ACTION_RECONNECT Can try again to connect,
correcting the user name
or the password used.

999 DAPI_NEXT_ACTION_EXIT The DAPI cannot continue
to run because of this
error.

next_action_data

Extra data required to execute the next action. Not available in the current version.

Description
This event is generated when the DAPI encounters an abnormal condition or when a method was
not executed successfully. The DAPI records each OnError event in its log and the error is made
available to the wrapper application for its use.

7.2.7 OnStatusChanged event

CdxapiCtrl :: OnStatusChanged (int status_code, LPCTSTR status_text)

CdcApi :: OnStatusChanged (int status_code, LPCTSTR status_text)

Parameters
status_code

Indicates the actual state of the connection. The possible values are:

Value Definition Meaning

7 TCP_ERROR_CANT_CONNECT The TCP/IP connection has failed.
Another attempt will be made, and
according to certain pre-
established rules a different server
may be used in this attempt.

21 TCP_STATUS_OPEN_CONNECTION A TCP/IP connection has been
established with the server.

20 TCP_STATUS_CLOSED_CONNECTION The TCP/IP connection with the
server has been lost.

27 TCP_SHUTTING_DOWN A connection close has been
requested. This connection
closure has been started, and the
last pending data is being sent.

status_text

Indicates the status text:

Description
This event is generated on establishing a connection, on a connection loss, or on logout of the
DAPI.

7.2.8 OnDataReceived event

CdxapiCtrl::OnDataReceived (BSTR source_id, BSTR message_name, BSTR message_data)

CdcApi::OnDataReceived (LPCTSTR source_id, LPCSTR message_name, LPCTSTR
message_data)

Parameters
source_id

The name of the connection. When there are multiple connections defined in the system.
message_name

Type o message.
message_data

Message content. This event is designed specifically for verification purposes.

Description
This event cuts the received message at the first null character and places the content in the
message_data field.

Definition Value Meaning

TCP_STATUS_OPEN_CONNEC
TION

"Initiating log
translation"

A log file is being retro-alimented
and simulates a connection.

TCP_STATUS_CLOSED_CONN
ECTION

"Finalizing log
translation"

A log file is being retro-alimented
and simulates a disconnection.

TCP_STATUS_OPEN_CONNEC
TION

"Connected" A TCP/IP connection with the server
has been established.

TCP_STATUS_CLOSED_CONN
ECTION

"Disconnected" The TCP/IP connection with the
server has been lost.

TCP_ERROR_CANT_CONNECT "Can't connect" The TCP/IP connection has failed.
Another attempt will be made, and
according to certain pre-established
rules a different server may be used
in this attempt.

TCP_SHUTTING_DOWN "Attempts to
establish a
connection and
processing
messages have
been suspended"

A connection close has been
requested. This connection closure
has been started, and the last
pending data is being sent.

88 DDAAPPII ccooddee eexxaammpplleess

There are two sample programs that show how to interact with the DAPI.

VbdxApiTest – A Windows example made in Visual Basic using the DAPI Activex
control.
lnxdrvapitest– A Linux example made in C++ using the libdapi.a or libdapi.so libraries.

These examples have been prepared so that they highlight the following actions of the DAPI:

 The DAPI login process using login().

 Triggering of the event OnMessageReceived() on reception of a message.

 Selection of a message to obtain its contents using TakeMessage()

 Accessing the fields of the message using GetField()

 Construction of a message to be sent to the system using InitMessage(“Message
Name”) and SetField()

 Construction of a partially changed message which had been received from the
system and is to be sent back to the system using InitMessage(“Message
Name”) and SetField()

 Event triggered on connection to the DataServer OnConnection()

 Event triggered on disconnection from the DataServer OnDisconnection()

 Event triggered on encountering an error OnError()

8.1 Example of how to process a message in Visual Basic

Public Sub OnOnMessageReceived(ByVal sender As Object, ByVal e _

 As AxdxapiLib._DdxapiEvents_OnMessageReceivedEvent) _

 Handles Axdxapi1.OnMessageReceived

 If e.message_type = mensaje_tabla_moneda Then

 Axdxapi1.TakeMessage(mensaje_tabla_moneda, e.message_id)

 mercado_postura = Axdxapi1.GetField("mercado")

 If Axdxapi1.GetField("o_d") = "O" Then

 ….

 ….

 // obtener un subcampo a partir del código

 nombre_cliente_vendedor = Axdxapi1.GetField("codigo_postura_hoy.nombre")

 ….

 ….

 End If

 End If

 Axdxapi1.FinishMessageProcess (e.message_type, e.message_id)

End Sub

8.2 Example of how to send a message using C++

Example 1:

 m_dapi.InitMessage (L_MessType); // Inicia un mensaje en blanco

 m_dapi.SetFieldBSTR(L_MessType, "trade_identification", m_trade_value);

 m_dapi.SetFieldBSTR(L_MessType, "instance_trade", m_instance_value);

 m_dapi.SetFieldBSTR(L_MessType, "bandera", "S"); // coloca valores requeridos

 m_dapi.SetFieldBSTR(L_MessType, "flag_side_changed", "A");

 //; B – The BUYER STP STATUS IS specified

 //; S – The SELLER STP STATUS IS specified

 //; A – Both BUYER and SELLER are specified

 m_dapi.SetFieldBSTR(L_MessType, "buyer_side_status_error", "reason");

 //; Texto con la razón para el comprador

 m_dapi.SetFieldBSTR (L_MessType, "seller_side_status_error", "reason");

 //; Texto con la razón para el vendedor

 m_dapi.SetFieldBSTR(L_MessType, "buy_stp_status", "Status value");

 //; Estado de la transacción del comprador

 m_dapi.SetFieldBSTR(L_MessType, "sell_stp_status", "Status value");

 //; Estado de la transacción del vendedor

 m_dapi.SendMessage(L_MessType); // Envía el mensaje

Example 2:

 m_dapi.TakeMessage (L_MessType, mess_num); // Inicia un mensaje en blanco

 m_dapi.InitMessage (“”); // Inicia un mensaje igual al mensaje referenciado

mess_num

 m_dapi.SetFieldBSTR(L_MessType, "bandera", "S"); // cambio del campo requerido

 m_dapi.SendMessage(L_MessType);

8.3 Sample workflow process for gathering transaction information for

back-office applications

It is important to carefully identify and select the pieces of information that the back-office
application will need. Therefore, this section will outline a minimalistic process to properly identify
the data gathered by the DAPI from the system.

The most useful message that the DAPI receives from the system is the Orden_Transaccion
which is send every time an action affecting the market window occurs. Examples of such actions
are: entering, modifying, withdrawing, or hitting bids/offers.

For practical purposes the following workflow will focus on transactional events only. See Error!
Reference source not found..

1. Once Orden_Transaccion is received read clase_mensaje field and depending on its

value proceed to the branch accordingly.
2. Regardless of the branch, identify the transaction with a unique identifier which is formed

by the union of the following fields:
mercado+fecha+hora+codigo_postura+codigo_postura_1. For example, the unique
identifier of a transaction can be: 83+20091028+152114+A00CHZF3R9+A00CHZF3RA
(i.e 36 characters).

3. Optionally, if it is necessary to differentiate between hits and registers read the content of
the bandera field. If it is empty the message is a hit, otherwise an “R” marks it as a
register.

4. Extract particular information as needed. Refer to the accompanying Excel file for a
complete field listing of the Orden_Transaccion message.

Begin

Orden_Transacción

message received

clase_mensaje

?

5 52 53

5

Extract transaction

Unique ID

Write information

to back-office

End

52

Extract transaction

Unique ID

Delete

Transaction from

back-office

End

53

Extract transaction

Unique ID

Extract transaction

modification

Update back-office

information

End

Transaction
Anullment Modification

Extract: owner/

price/agressor

information

Figure 4 Flowchart depicting the recommended processing of an Orden_Transaccion

message for back-office logging.

Note: This workflow is a sample and can be taken as a base for the programming of transactions processing. However, it
could be other variables of each environment that must be taken into account by each client, when an application that
uses the DAPI is being designed/developed.

99 CCoonnffiigguurraattiioonn ooff tthhee DDAAPPII iinn tthhee DDMMcclliieenntt

The administrator of the system should setup the identity of the DAPI using the DataManager
Client. To perform this, select from the Master Files window the institution and branch to which
this new DAPI user will belong to and create a new Primaryuser (PU) as shown in Error!
Reference source not found. and Error! Reference source not found.. Note that the DAPI’s
PU has a special property called Dapi Client which must be set to Yes (shown highlighted for
clarity).

Figure 5 Select the branch and right-click to view the menu

Figure 6 Addition of a new PU assigned to the branch of the DAPI user

Once the PU is created proceed to add a new DAPI user. There is no need to grant market
access for this user. The only restriction that has to be taken into account for this user is that it
must use the Primaryuser with special properties created previously.

Figure 7 Properties of the new DAPI user.

In the example above the key information needed for the dapi.cfg file is the branch code
(A003BOGA), the user code (A05L), and the primary user code (A05Q) used for the local_code
directive in the dapi.cfg.

Finally, assign a password to the user with the DataManager Client. Note that this password is
case sensitive, does not expire, and is automatically blocked after three unsuccessful attempts.

Figure 8 User passwords option in the DataManager Client

Note: This is a sample of the general configuration of a DAPI user. There are other types of DAPI
users that depends on the Institution configuration, that applies to certain environments and are
not treated in this document.

1100 CCoonnffiigguurraattiioonn ooff tthhee DDAAPPII iinn tthhee cclliieenntt ((ddaappii..ccffgg))

In the DataManager the administrator of the system should setup the identity of the DAPI as a
separate user. The user name, password and a configuration file called DAPI.cfg should be made
available to the DAPI site by the administrator. This file will contain, amongst other information,
the branch code and the user code assigned for the DataManager.

The following is an example of the contents of the DAPI.cfg file. The character ‘#’ is used at the
beginning of comment lines:

Figure 9 DAPI.CFG File.

Parameter Example Description

oper_file_version SET-FX DAPI Version description

local_code G0OC Primary user code assigned to the DAPI by the
administrator of the system using the
DataManager

user_code G0IM User code assigned to the DAPI by the
administrator of the system using the
DataManager. A User code is different from a
Primary user code.

send_mode 2 Communication protocol.
0 - Encrypted IDEA (Deprecated)
1 - Not Encrypted & Not Compressed
2 - Compressed using BSD or RLE, depending
on the size of the message (Default)
3 – Encrypted using IDEA and Compressed.
(Deprecated)

use_ssl 0 0 – Without SSL. (Default)
1 – Connect using SSL.

If this parameter is set to 1, which we
recommend to secure the connection, the
following files should be copied to the same
directory where the executable is located::
- ssl.cfg (with –v 3 option)
- ssl/certs/server.pem
- ssl/certs/cuduser.pem
- ssl/private/ca.crt
- The *.pem files with their names changed to
their hash numbers under the ssl subdirectory of
the execution directory. For example:
- ssl/certs/6_users/5b7f9658.0
- ssl/certs/6_users/5f552eb8.0

Additionally, the ds_tcp_port argument must be
the corresponding SSL port of the Dataserver.

Note: These files are included in the Linux and
Windows samples.

branch_code G0JKUIOA DAPI User branch code.

data_server $02Q DataServer code.

Note: If another dataserver is defined to connect
the DAPI application, it is necessary to specify
the name, ip and port (ds_ip_address y
ds_tcp_port).

Note: If there were more dataservers in the
environment, their names must be specified
even if the DAPI application is not connected to
them.

ds_ip_address 192.168.112.22 IP address of the DataServer indicated in the
parameter data_server

ds_tcp_port 2008 TCP port of the DataServer indicated in the
parameter data_server. This port has to be
enabled by the system administrator.

If use_ssl argument is set to 1, then this port
must be the SSL port that the data_server is
listening to. When connecting a DAPI
application through Internet, the SSL port is
usually the 443 port.

transaction_feed 1 0 – Block reception of transaction messages
emitted by the system – this would be used in
the case of DAPIs which use only statistics
messages.
1 – Receive transaction messages

Note: guibos_feed and transaction_feed cannot
be specified simultaneously. Only one of them
can be defined with value 1.

guibos_feed 1 0 – Block reception of Guibos messages emitted
by the system – this would be used in the case
of DAPIs which use only statistics messages.
1 – Receive Guibos messages

Note: guibos_feed and transaction_feed cannot
be specified simultaneously. Only one of them
can be defined with value 1.

Note: Guibos are persistent (not high and not
low priority messages for log) messages and the
DAPI asks for persistent log seven days back by
default. If there are processed messages, then
the persistent log is asked from the date of the
latest Guibos message marked as processed.
Therefore, the following options are not used for
guibos_feed.

- log_days_high_messages

- log_days_low_messages

- log_last_processed_message

table_code 31 Grupos_Vigentes Specifies the table code and name of global
table codes that DAPI subscribes to.
Format:
Table_code <table_internal_code> <msg_type>

Where:
<table_internal_code> is the code of the
table. This information must be provided
by Icap del Ecuador.
<msg_type> Is the message type that
corresponds to the table and depends
directly of given the code.

Several tables can have the same message
type. The codes and types must be provided by

Icap del Ecuador and depends on the the
market and data received by DAPI.

Note. For example, for Fixed Income markets
69,140, 141 they are:
31 Grupos_Vigentes
36 Mercados_Renta_Fija_Vigentes
6906 Resumenes_Vigentes
14006 Resumenes_Vigentes
6901 Posturas_Vigentes
6902 Posturas_Vigentes
14001 Posturas_Vigentes
14002 Posturas_Vigentes
14101 Posturas_Vigentes
14102 Posturas_Vigentes
6907 Hechos_Vigentes
6905 Indices_Vigentes

testing_file Dapi_test.log The name of the file which will hold the DAPI
log. This log will contain all the messages
sent/received from the system.
This option allows testing the functionality of the
DAPI in a real connection. In this way the DAPI
can receive messages without being connected
to a real environment. Additionally, it is possible
to debug possible errors of previous executions
where the dapi log is available.

testing_start 20091215091500 Specifies the beginning date (yyyymmdd) and
time (hhmmss) from which the DAPi reads the
testing_file.

testing_end 20091215091500 Specifies the ending date (yyyymmdd) and time
(hhmmss) until the DAPi reads the testing_file.

testing_output_file Test_dapi_output.log Output log file for reading of testing_file.

language

ENGLISH Specifies the language to be used in the
messages types that are sent to the application
that uses the DAPI.
Possible values: SPANISH,ENGLISH
If the parameter is not defined, DAPI will use the
original message names.
For example,
Original name: precios_por_hora
Spanish name:
mensaje_precios_por_hora_monedas
English name:
currency_price_by_hour_message

log_last_processed_m
essage

F,L,N Default value = L

It controls from which message it is required the
high and low priority log messages when the
DAPI gets connected to the Dataserver, taking
into account the values specified in
log_days_high_messages and
log_days_low_messages parameters.

Possible values are:

F: Get the log from the oldest message that
DAPI had not marked as processed.

L: Get the log from the more recent message
that DAPI had marked as processed. In this
case, any previous message that DAPI had not
marked as processed will not be requested.

N: Do not use marked messages. Get the log of
all the messages since the beginning of the day.

Note: If the application always mark as
processed the received messages by
DAPI, there is no difference in the messages
that DAPI gives to the application because all
the messages marked as processed are
discarded. Of course, there is an exception
when the DAPI log files are deleted.

Example:
log_days_high_messages=0
log_days_low_messages=0
log_last_processed_message=N
When DAPI ges connected to Dataserver, it
request the log messages sent today since the
beginning of the day.

Example:
log_days_high_messages=7
log_days_low_messages=7
log_last_processed_message=F
When DAPI ges connected to Dataserver, it
request the log messages sent maximum seven
days ago, beginning in the oldest message that
had not been marked as processed.

Note: The default value in previous versions
than 1.061 was F.

use_msg_code 121 in markets 69
140 141

To indicate a different message number for
Orden_Transaccion message.

In the sample it is indicated to use message
number 121 (instead of default 111) in markets
69, 140, 141.

send_Msg_Delay_Milli
sec

500 Delay used to send messages, in milliseconds.

Note: All the DataServers available in the system environment to which the DAPI is to be connected must be
included in the DAPI.cfg.

10.1 Temporal Configuration File

(dapi_tmp_previous_date_log_request.txt)

Extraordinarily, the administrator, can provide the temporary file
“dapi_tmp_previous_dat_log_request.txt”, which instructs the dapi to ask the retransmission of all
messages of a defined day in the past. This file has to be created in the same directory of
dapi.cfg and current directory of the application. As percausion to avoid future retransmissions
the file is deleted after being read.

The required date must be defined in the first characters of the first line and in format
YYYYMMDD, if there is any error reading or deleting the file, or with recognizing the date, the
error is returned and the normal DAPI process is not continued.

Figure 10 Dapi_tmp_previous_date_log

The possible errors are:

Error Code Description
DAPI_ERR_INVALID_DATE 27 Invalidate date in the tmp

config file

DAPI_ERR_CANNOT_DELETE_TMP_CONFIG 28 Can not delete tmp config
file

DAPI_ERR_READING_TMP_CONFIG 25 Reading temporal config file

DAPI_ERR_EMPTY_TMP_CONFIG 26 Empty temporal config file

1111 IInnssttaallllaattiioonn ooff tthhee DDAAPPII iinn WWiinnddoowwss

11.1 Installation and use of the Windows ActiveX control (OCX)

The Activex form of DAPI has two main files:

1. The dxapi.ocx
2. The dapi.cfg
3. The dapi_tmp_previous_date_log_request.txt

If being installed over a previous version of the DAPI, please uninstall the previous version
executing the following instruction from within the directory where the Dxapi.ocx is found:

Regsvr32 /u dxapi.ocx

https://ssl.microsofttranslator.com/bv.aspx?ref=TAns&from=&to=en&a=dapi.cfg

Then overwrite the previous version of the Dxapi.ocx with the new version.

For a new installation, copy the Dxapi.ocx file to the directory where the wrapper application will
run. Then from within the directory where the new version of the Dxapi.ocx has been copied,
type the following instruction to register it:

Regsvr32 dxapi.ocx

This command registers the ocx library in the host so that the OS can properly map calls to that
library.

On Windows 64-bit systems the ocx should be installed under the \windows\sysWOW64 folder.

Note: These commands to register/unregister the ocx control must be executed with Administrative

privileges.

The next step is to configure the parameters in the DAPI.cfg depending on the chart provided
above.

Finally code has to be included in the wrapper/interface application in order to interact with the
Dxapi.ocx. Usually the DAPI would be included in a window (e.g. a dialog box), a variable would
be created, and the event handlers would be redefined as necessary (especially the
OnMessageReceived event). If messages have to be sent to the system, the appropriate
methods provided by the DAPI for this should be called, using the same variable.

11.1.1 Check the DAPI version in the OCX File

It is possible to check the DAPI version in the OCX file. In order to do that, right- click the file
and choose Properties, then click on Details tab.

Figure 11 Dxapi.ocx properties

11.2 Installation and use of the Windows library

Copy the library onto the directory where the project is going to be built and import it into the
project environment.

Configure the parameters in the DAPI.cfg depending on the chart provided above.

Review the methods defined in the file DRVAPI.cpp, and especially those methods which are
event handlers for DAPI runtime generated events. If required, a new class may be derived using
CdcApi as the base class.

11.3 VbdxApiTest - Windows example of the use of DAPI

11.3.1 Note for 64-bit Windows machines running Visual Basic example

To execute the Visual Basic example in Windows 64 bits platforms that doesn’t have Microsoft
Visual C++ 2005 installed it is required to install the package Microsoft Visual C++ 2005
Redistributable Package which includes Visual C++ runtime components.

This package installs runtime components such as C Runtime (CRT), Standard C++, ATL, MFC,
OpenMP and MSDIA libraries. In the case of libraries that allow the simultaneous implementation
model those components are installed in the native assembled cache folder or WinSxS.

Before installing this package is necessary to verify that there is no similar package installed,
checking in Control Panel -> Programs and Features. If a similar package is installed it must be
uninstalled before installing the new package.

Next, install the package by opening a DOS window and executing the following command:

vcredist_x64 /Q

When the installation is completed the same will be visible in the Program and Features window:

Figure 12 Microsoft Visual C++ redistributable package installed on the client machine

11.3.2 Running Visual Basic example

A simple and easy to use example has been created using Visual Basic to illustrate the use of the
DAPI and its function calls. It is found under the \sample\windows\vbdxapitest\bin directory of
the distribution kit. Copy the contents of this directory to the local disk of the machine where the
example is to be run and follow the steps indicated in README.TXT.

The example vbdxapitest is distributed in the folder sample. Before executing this example you
should verify the following:

1. The configuration of the DAPI user in the DataManager.
2. The configuration of the user data and of the DataServer in the file dapi.cfg.

(dapi.sample.cfg is provided).
3. The file dapi.cfg should be in the same folder where the example program

vbdxapitest will run.
4. The folder from where the program will be run must be folder on a local drive. The

Visual Basic DAPI will not run from a network drive.
5. The ActiveX Control dxapi.ocx must have been registered (see chapter on the DAPI

instalation).

On executing the example, you should click on the Login button, and optionally fill in the
requested username and password fields.

Figure 13 VbdxApi Test Application Main Window prior to login

Figure 14 VbdxApi Test Credentials window (can be ignored).

The following screen shot shows how the example appears after a successful connection.

Figure 15 VbdxApi Test Application Main Window

In this example, the ActiveX Control (dxapi.ocx) was included in the window (Form1. The name
given to this control was Axdxapi1.

11.3.3 Login and Logout buttons

The button Login calls the method Login of Axdxapi1 as can be seen in the line of code in
Form1.vb:

 Public Sub StartTesting_Click(…) Handles StartTesting.Click…

…

login_res = Axdxapi1.Login(username, password)

…

 End Sub

The button Logout calls the method Logout of Axdxapi1 in a similar way to Login.

In order to manage events in Visual Basic the method invoke must be used. This method avoids
concurrent execution conflicts between dxapi.ocx and the Visual Basic application. The following
code summary shows the process:

Public Delegate Sub Delegate_OnConnection(ByVal e As

AxdxapiLib._DdxapiEvents_OnConnectionEvent)

 Public Sub OnOnConnection(ByVal sender As Object, ByVal e As _

 AxdxapiLib._DdxapiEvents_OnConnectionEvent) Handles Axdxapi1.OnConnection

 TextBox1.Invoke(New Delegate_OnConnection(AddressOf Dlgt_Onconnection), _

 New Object() {e})

 End Sub

 Public Sub Dlgt_Onconnection(ByVal e As AxdxapiLib._DdxapiEvents_OnConnectionEvent)

 PrintText("OnConnection Event", TO_SCREEN_AND_LOG)

 PrintText([String].Concat("Result Code:", e.result_code), TO_LOG)

 End Sub

The abovementioned problem does not exist in other languages like Visual C++ or Visual C#, by
design.

11.3.4 View Fields and View Fields in Depth buttons

The button View Fields is an example of how to access all the fields in a message, and the
buttonView Fields in Depth shows that there are detailed fields that depend on the previous
fields. The essential part of the code is the following:

 Dim fieldvalue As Object

 Dim fieldstr As String

 Get the message from OCX

Axdxapi1.TakeMessage (msg_type, msg_id)

 'Get the first field name

 fieldstr = Axdxapi1.GetNextFieldName(fieldstr)

 'Go through all the message fields until the end

 While fieldstr.Length > 0

 If fieldstr.IndexOf(".") = -1 Then

 'Get the field name value

 fieldvalue = Axdxapi1.GetField(fieldstr)

 'Take field name fieldstr and value fieldvalue

 …

 …

 End If

 'Get the next field name of the message

 fieldstr = Axdxapi1.GetNextFieldName(fieldstr)

 End While

The results of the execution are passed to the windows, and appear as follows:

Figure 16 View Fields Button Window

Figure 17 View Fields in Depth Button Window

11.3.5 Set As Processed button

The button Set As Processed calls the method FinishMessageProcess, neccessary in order
that the DAPI can mark the message as having been processed, to free the resources reserved

for this process, and to avoid the re-processing of this message in the event of a re-connection.2

1122 DDAAPPII LLiinnuuxx iinnssttaallllaattiioonn

Linux distribution contains the following files:

 llibdapi.a (static library).

 libdapi.so (dynamic library).

 sample\lnxdrvapitest_a.zip (static library sample).

 sample\lnxdrvapitest_so.zip (dynamic library sample).

12.1 Default configuration under Linux

The DAPI (Linux) has been generated and tested in the following environments:

 Red Hat Enterprise Linux Server release 5

 Red Hat Enterprise Linux Server release 6.8

 Red Hat Enterprise Linux Server release 7.1

 gcc (GCC) 4.8.3.

 OpenSSL 1.1.1.b

12.2 OpenSSL

It is not required to complile the OpenSSL library

12.3 Installation and use of the Linux version of DAPI

After selecting the Linux platform to use (whether it be 5, 6,8 or 7) unpackage the
lnxdrvapitest.zip the lnxdrvapitest directory and under this folder you will find several files which
will be detailed below.

The DAPI libraries for Linux are libdapi.a and libdapi.so, they are distributed as precompiled file
using the gcc compiler version indicated previously. Therefore the application should be linked
with this library to use the DAPI methods.

The header file for DAPI is dcapi.h and it is located in: lnxdrvapitest/dcapi/dcapi.h

Figure 18 Dapi Linux structure

12.4 Building the library in Linux

It is not required to compile the DAPI library as it is already distributed. Additionally, the
source code of this library is not distributed.

12.5 Building the Linux sample (drvapitest)

The distribution kit for the DAPI(Linux) includes an already compiled example that uses the
libdapi.a or libdapi.so libraries.

If you need recompile the drvapitest program, you should install:

 gcc 4.8.3

 glibc-devel-2.17-78.el7.i686.rpm

In order to recompile the sample code, issue the following commands:

[myuser@workdir] $ cd lnxdrvapitest/scripts
[myuser@scripts] $./mk drvapitest clean
[myuser@scripts] $./mk drvapitest

Note that the generation of the DAPI and its example has been done using scripts. The use of
scripts implies that these should be in same format as the shell would expect them to be in, which
is the Unix format.

If a problem is encountered while executing the scripts which points to incompatibility of the
formats, the following instructions may be used, which would convert the mk script to Unix format:

[myuser@scripts] $ dos2unix mk

The script formats could be affected if copy operation is done from a Windows operating system.

12.6 Possible error messages during the compilation process

If the required gcc libraries are not installed in the host used for compiling the sample code, it is
possible that the mk script throws errors such as:

Figure 19 Sample error message when gcc libraries are not found

To install the 32-bit compatibility libraries use the glibc-devel-2.5-81.i386 RPM library. In order to
install this package issue the yum command.

Figure 20 Using yum to install compatibility libraries

When compiling sample code in a 64-bit OS host make sure that the correct libdapi.a library is
installed. That is, the 32-bit DAPI library compatible with a 64-bit OS. If the incorrect DAPI library
is use, the following error may arise:

Figure 21 Sample error message when wrong libdapi.a version is used

The following screenshot shows a successful sample code compilation in a 32-bit OS host.

Figure 22 Successful compilation of the sample program

12.7 drvapitest - Linux example using the DAPI

The DAPI distribution for Linux includes an example showing the usage of the libdapi.a and
libdapi.so libraries. The library is called by the drvapitest executable (C++ source code is also
included). To ensure that the application runs properly it is necessary to follow the procedure
detailed below:

1. Configure the DAPI user with the DataManager Client.
2. Update the dapi.cfg configuration file with the DAPI user information and the

correspondent DataServers a los que puede conectarse.
3. Ensure that dapi.cfg file is located in the same directory where the aplication drvapitest is

going to be executed.

The executable of DAPI simple is under the directory lnxdrvapitest/drvapitest/xrelease. Therefore,
it is necessary to go to this directory and then execute the application:

[myuser@ xrelease]$./drvapitest

Figure 23 Execution of the sample program

1133 MMeessssaaggee ddeessccrriippttiioonnss

In an accompanying Excel file each message to be used by the DAPI is described in detail using
a separate spreadsheet.

The Excel file description of each message uses the following columns:

Nombre del campo
The field name in Spanish. This is the field name that must be used when referencing a field in
the DAPI program. In a future version you will also be able to use the field name in English.

Field name
The field name in English.
A few fields are redefined as two or more sub-fields. In this case the master field names are in
BLUE type, and the sub-fields are indented by four characters. The DAPI can use either the
master field name to manage all the characters as one string, or individual sub-fields can be
referenced to manage a sub-string.

Field type
The field type can be:

alphanumeric
Any alphanumeric character or “ “ (space).

alphabetic
Any letter A-Z, a-z, or “ “ (space).

time
A time expressed in format HHMMSS

date
A date expressed in format YYYYMMDD

short
Signed integer occupying two bytes, –32,768 to 32,767.

long
Signed integer occupying four bytes, -2

31
to (2

31
– 1)

numeric ascii
A number stored in ascii character format, using a decimal point if there are decimals

numeric ascii signed
A number stored in ascii character format, using a decimal point if there are decimals,
and with a leading negative sign if the number is negative.

Length
The total length of the field. If the field is numeric ascii and has decimals, the length is the sum of
the digits, the decimals, plus one character for the decimal point. If the field is numeric ascii
signed, the length of the field is the sum of the digits, the decimals plus one (if there are
decimals), plus one for the sign.

Digits
The number of digits of a numeric ascii field.

Decimals
The number of decimals of a numeric ascii field.

Descripción
The field description in Spanish.

Description
The field description.

1144 EErrrroorr CCooddee LLiisstt

The following table contains the error codes reported by the DAPI application.

Code Error identification

1 DAPI_ERR_INTERNAL_ERROR

 Error received by the DAPI from the operating system. Check the last operation attempted by the
DAPI

2 DAPI_ERR_CONFIG_NOT_FOUND

 The specified configuration file can not be opened. Check if the file exists and check that the
application has read permission for this file.

3 DAPI_ERR_CONFIG_BAD_DATA

 Syntax error in the configuration file. Check the specified line.

4 DAPI_ERR_NOT_INITIALIZED_YET

 A method call has been attempted, but the login method has not been called before.

5 DAPI_ERR_REJECTED_CONNECTION

 Datatec server has rejected the connection attempt, for an unknown reason. Contact operations
support.

6 DAPI_ERR_RC_NOT_AUTHORIZED_USER (X)*

 The Datatec server has rejected the connection attempt as the user is not authorized.

7 DAPI_ERR_RC_USERNAME_DONOT_EXIST (N)*

 The Datatec server has rejected the connection attempt because the user name used is not
registered in the Datamanager.

8 DAPI_ERR_RC_ILLEGAL_PASSWORD (C)*

 The Datatec server has rejected the connection attempt because the wrong password was sent.

9 DAPI_ERR_RC_NO_DMACHINES_TRY_LATER (D)*

 The Datatec server has rejected the connection attempt because there is no Datamanager on line
to validate the user.

10 DAPI_ERR_RC_DUPLICATED_MACHINE_CODE (R)*

 The Datatec server has rejected the connection attempt because there is another user connected
using the same code.

11 DAPI_ERR_RC_MACHINE_NOT_REGISTERED (E)*

 The Datatec server has rejected the connection attempt because the code of the computer from
which the attempt was made is not registered in the Datamanager.

12 DAPI_ERR_RC_ILLEGAL_BRANCH_PASSWORD (L)*

 The Datatec server has rejected the connection attempt as the branch password is incorrect.

13 DAPI_ERR_STATUS_NOT_EXPECTED

 The connection status has changed to an undefined status. Report this issue to operations support.

14 DAPI_ERR_IMPROPER_OPERATION

 Parameters passed to a DPI method have invalid values. The error detail explains more about the
origin of this problem.

15 DAPI_ERR_ILLEGAL_RECORD_TYPE_SPECIFIED

 The name of the record used as an argument for a method is invalid.

16 DAPI_ERR_ILLEGAL_FIELD_NAME_SPECIFIED

 The name of the field used as an argument for a method is invalid.

17 DAPI_ERR_ALREADY_INITIALIZED

 Occurs when Login method is called when the DAPI is already connected .

18 DAPI_ERR_RECORD_NOT_FOUND

 The number or identification of a requested message does not exist. Either the parameter is
incorrect or the message has been discarded using FinishMessageProcess.

19 DAPI_ERR_CONDITION_EVALUATION

 DAPI can not evaluate the reception conditions given in the SetLoginCondition method. Check the
number of operators and that the operations are in the BNF format.

20 DAPI_ERR_COULDNT_USE_LOG_FILES

 The selected log file can not be opened. Check the access privileges for the execution directory.

21 DAPI_ERR_NO_DS_DIRECTIVE

 The configuration file does not define any DataServers. This is necessary in order to be able to log
on to the system.

22 DAPI_ERR_ILLEGAL_ADDRESS_TYPE_SPECIFIED

 The specified address type is invalid. Check the addresses.

* The letter in parenthesis is the value received from the DataServer at the end of a failed Login
attempt.

